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Abstract

A chemometric study has been conducted on a published data set consisting of the retention times of 83 substances, from
five pharmacological families, on eight HPLC systems. Principal component analysis, clustering and sequential projection
pursuit were applied. In this way it was investigated to what extent the combination of chromatography and chemometrics
alows one to make conclusions about pharmacological activities of (candidate) drugs and what the contribution is of the
different HPLC systems considered. [ 2000 Elsevier Science BV. All rights reserved.

Keywords: Quantitative structure—activity relationship; Principal component analysis, Clustering; Sequential projection

pursuit; Chemometrics

1. Introduction

According to Valko [1] and several other authors
[2] the chromatographic retention as well as the
biological activity of a molecule are connected to its
chemical structure. One can therefore hope to estab-
lish a relationship between chromatographic reten-
tion and biological activity. This has aready been
successfully done for instance by relating the re-
tention on C,, stationary phases to the hydropho-
bicity parameter (log P), which plays a role in many
quantitative structure—activity relationships (QSARS)
[3].

Recently several new stationary phases or chro-
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matographic systems have been proposed that may
help to predict biological activity. They include
amongst others the immobilized artificial membrane
(IAM) stationary phase [4] consisting of cell mem-
brane phospholipids, and micellar liquid chromatog-
raphy [5,6], where the properties of the passage over
a cell membrane are mimicked by using as the
mobile phase aqueous solutions of surfactants at
concentrations above the critical micellar concen-
tration, thus creating two phases with different
polarities.

Biological activity is a very complex matter,
determined by many variables; i.e., it is multivariate
by nature. Consequently one should try to include
more than one chromatographic system when at-
tempting to relate chromatographic and biological
data. Such an interesting investigation was conducted
by Nasal et a. [7]. They studied, on eight chromato-
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graphic systems (CSs), 83 drugs belonging to several
families according to an established pharmacological
classification. The CSs were HPLC systems using
severa of the latest stationary phases at different pH
values of the mobile phase. After applying principal
component analysis (PCA) they concluded that the
obtained logarithms of the retention parameters (log
k) allow classifying of the substances according to
their pharmacological properties. This is not surpris-
ing since multivariate statistical methods (like PCA)
have also been successfully applied for characteris-
ing similarity/diversity of compounds given knowl-
edge of the chemical structure [8].

Next to the chromatographic retention one of the
first experimental data available about a (new) mole-
cule is its molecular mass (M,). The retention of
candidate drugs is very often determined in a com-
binatorial synthesis context and, in such cases, one
often applies liquid chromatography—mass spec-
trometry (LC-MS), with the electrospray ionization
technique, where the MS essentidly yields the
molecular mass [9]. Being a descriptor of the mole-
cule, the M, together with the chromatographic data
may alow better relationships with biological data
and may thus lead to a better classification.

Nasal et a. [7] were only interested in establishing
that the classification of the 83 drugs based on the
retention data was possible. In this paper a more
complete chemometric analysis of their data is
performed in order to extract as much information as
possible. This way for instance it is studied whether
the data can give indications about the underlying
physicochemical phenomena responsible for the re-
tention on a given stationary phase. Furthermore it is
evaluated if the results of all CSs are really needed to
make the classification. Since in LC—MS the electro-
spray MS yields very little fragmentation and is used
when one essentially wants to know the molecular
mass, it is examined to what extent the M, yields
additional information to the chromatographic re-
tention parameters for classification purposes.

2. Theory
2.1. Principal component analysis

Nasal’s data set can be considered as a large nXm
matrix where n represents the objects (the drugs) and

m the variables (the CSs). With PCA the amount of
original variables is reduced to a few latent variables
or principal components (PCs) that still represent the
main information from the original data set. The first
new variable (PC1) is chosen in the direction of the
largest variance in the data. The second PC is
defined in such a manner that it is orthogonal to the
first one and it represents a maximum of variance
that was not explained by PC1, etc. Mathematically
each PC can be described as a linear combination of
the original variables where the importance of each
original variable is given by the so-called loading of
that variable. This yields for each object values,
called the scores, on each PC. With PCA two main
types of plots are obtained, namely the score plots
which give information about the objects, here the
substances, and the loading plots representing the
variables, in this case the CSs.

2.2. Cluster analysis

Cluster analysis is the collective name for several
techniques that are able to partition objects or
variables into different groups. Most used are hierar-
chical clustering methods. They produce a classifica-
tion in such way that any small cluster of a partition
is fully included in one of the bigger clusters of the
consecutive partition. Graphically the hierarchy can
be represented by a dendrogram.

Before one starts the partition of n objects or
variables it is necessary to determine the similarity
between all objects. Most of the time the Euclidean
distance, which is a measure of the geometric
distance in a multidimensional space, is determined
for each pair of objects. When clustering the vari-
ables the correlation coefficient between variables is
used more frequent.

In this article Ward's hierarchical agglomerative
clustering, which is often considered to be the
method best able to separate similar and dissimilar
structures [10-12], is also applied. With this method
the two clusters whose fusion gives the minimum
increase in the total within groups error sum of
squares is used at each stage.

2.3. Weighted halistic invariant molecular
descriptors

Weighted holistic invariant molecular (WHIM)
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descriptors are three-dimensional molecular indices
that contain information about size, shape and sym-
metry. The essential characteristic of the method is
that a PCA is made of the three-dimensional space in
which the atoms are situated [13]. The first PC
describes the direction of the largest length of the
molecule, the second PC the direction orthogonal to
the first and the largest variation around PC1, etc. A
guantitative measure is the eigenvalue associated to
each PC. If for instance the eigenvalue of PC3 is
small compared to the others, then it means that the
molecule has a planar structure. PC1 and PC2
describe the main axes in the planar molecule, PC3
the thickness of that planar molecule, which will be
small compared to the eigenvalues of PC1 and PC2
and to what would have been found for a more
globular molecule [14].

2.4. Sequential projection pursuit

Like PCA, projection pursuit (PP) is a chemo-
metric method that projects an original multivariate
space onto a few latent variables. However the aim
of PCA isto choose these new variables in such way
that they represent the maximal variance in the data,
while PP looks for the most *‘interesting’” directions.
This means that the latent variables, in this case the
PP factors, have a direction that leads to a non-
uniform distribution of the projected data. These
factors then show the inhomogeneities present in the
data. A way of measuring non-uniformity and thus
an index for the ““interesting”’ directions is obtained
by optimising entropy [15,16].

Because PP searches for al PP factors together, it
is computationally very intensive. That is why in this
article the sequential projection pursuit (SPP) meth-
od as described by Guo et al. [17] is applied. Here
the latent variables or SPP factors are sought sequen-
tially in the order of their importance as measured by
the entropy index. Consequently the first SPP factor
is the one that describes the maximum entropy of the
projected data, the second SPP is constructed in such
way that it is orthogonal to the first and maximises
the remaining entropy of the data, etc. Parallel to
PCA it is aso possible to make ‘‘score” and
“loading” plots, representing, respectively, the ob-
jects and the variables.

2.5. Transformations

Often some type of simple transformation (or
scaling) is applied to the original data before it is
chemometrically analysed with methods like PCA,
clustering or SPP. The rows (objects) as well as the
columns (variables) can be transformed solely or
both, one after the other. Among the many possi-
bilities column-wise autoscaling and centering are
the most used transformations [18]. Column-center-
ing just gives a scale shift in the data matrix, because
for each variable (here CS) a constant (the mean) is
subtracted from each of its measurements (here log k
values). With autoscaling this difference is divided
by the standard deviation, giving rise to variables
which are independent of the unit of measurement,
and which have equal range and therefore impor-
tance.

3. Experimental

The chromatographic data consisted of log k
values and were taken as such from Nasal et al. [7].
The studied chromatographic systems included: a
chiral o,-acid glycoprotein (AGP) column at pH 6.5
(CS1), an IAM column at pH 7.0 (CS2), a Suplex
pKb-100 column at pH 2.5 (CS3), a Suplex pKb-100
column at pH 7.4 (C$4), a RP-Spheri column at pH
2.5 (CSb), a RP-Spheri column at pH 7.0 (CS6), an
Aluspher RP-select B column at pH 7.3 (CS7) and a
Unisphere PBD column at pH 11.7 (CS8). More
details concerning the experimental part can be
found in Ref. [7]. The ninth variable added to this
data analysis was the molecular mass. The drugs,
their pharmacologica classification (families A—E),
the retention data together with their M, and other
physicochemical properties are shown in Table 1.

The log P values were estimated by applying the
on-line interactive LOGKOW program of the En-
vironmental Science Center of Syracuse Research
Corporation, Syracuse, NY, USA (http://esc.syrres-
.com/~escl/kowint.htm). The WHIM descriptors
were calculated from the Cartesian coordinates of
optimised structures (Hyperchem 3.0 [19]) using the
software of Todeschini, namely the WHIM-3D pack-
age [20]. The transformations applied on the data
were executed in the Matlab 4.2c.1 program from the
MathWorks, Natick, MA, USA. For the PCA a
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Table 1
The pharmacological classification, the retention data, the molecular masses and other physicochemical properties of the 83 drugs examined
in Ref. [7]
No. Drug Logk AGP LogkIAM Log k,, Suplex  Log k,, RP Spheri Log k,y Aluspher, Logk,, Unisphere, LogP M,
pH25 pH74 pH25 pH 7.0 pH 7.3 pH 11.7

CS1L CS2 CS3 (o753 CS5 CS6 CSs7 CS8 9
Family A Psychotropics and inactive phenothiazines
1. Acetopromazine 1767 1.061 1382 3.233 3.062 2319 3.606 2.934 4241 3265
2. 2-Acetylphencthiazine 1.988 1197 2.857 3904 29 2.655 2.803 3.065 35054 241.33
3. Carbamazepine 0.846 0.392 1539 2.356 1229 2.365 1.455 0.926 22484 236.27
4. Chlorpromazine 2131 1435 1595 4.051 1935 2.632 3.309 4,076 52049 318.86
5. Chlorprothixene 2.206 1533 1597 4.642 2244 2417 444 4.235 51445 315.86
6. Clomipramine 2.005 1391 2134 4144 2.353 2473 4115 391 56536 314.86
7. Desipramine 1595 1031 1616 3.02 2,015 2.341 3171 2.888 47979  266.39
8. Ethopropazine 2.066 1213 1418 3241 2443 3.761 2.832 4181 54691 3125
9. Fuphenazine 2159 1.496 1683 4554 2922 2.688 4.067 3.352 41345 437.52
10.  Imipramine 167 1.097 1391 3535 2,082 3.158 3133 3.02 50091 280.41
11.  2-Methoxyphenothiazine 2151 1282 3.048 4.094 3.097 3.056 3.397 34 31228 229.32
12, Perphenazine 2.283 1.393 1635 4.305 2997 3.092 3.256 3.07 3816  403.97
13, Phenothiazine 1.854 1354 306 3.949 2.769 3.167 3.263 3375 3.8248 1993
14.  Prochlorperazine 2614 1726 1452 4878 1.843 2421 4.395 3523 47897 373.94
15.  Promazine 189 1.165 1556 3.492 2.338 2.808 3.794 3.294 45604 2844
16.  Propiomazine 2105 1234 1576 4.02 2.536 2.748 3.958 3.497 46586 340.48
17.  Thioridazine 2448 1752 2113 426 2,055 2.924 3.182 4.655 6.4486 370.6
18.  cis-Thiothixene 2273 1.359 1417 3971 2,098 3.365 358 277 31392 44363
19.  Trifluoperazine 2.388 182 1778 4.948 1792 2.644 5.022 3.632 5.1082 407.49
20.  2-(Trifluoromethyl) phenothiazine 2.543 1815 3569 5.354 2227 3.255 4418 4.804 47878 267.27
21, Triflupromazine 1.976 1514 196  4.409 2533 2,638 379 4117 55234 35244
22 Trimeprazine 1934 1.209 1472 3488 2426 2174 3.681 3.508 4978 29844
Family B: Agonists and antagonists of a-adrenoreceptors
23.  Cirazoline 1.082 0.94 0826 1.374 0.693 1934 1.948 1.583 32186 216.28
24.  Clonidine 0.847 041 008 1138 0.201 1164 1.163 1.283 1888 230.1
25.  Detomidine 1.073 1018 1.097 2582 0.758 1.337 2.255 1.627 32915 186.26
26.  Doxazosin 1.798 1.983 1524 3874 1.876 3.204 2.694 2.823 20853 45148
27.  Indoramin 1454 1594 1442 3218 1.298 2373 2.649 2.299 3.6021 347.46
28. Lofexidine 0.965 0.879 0.791 1479 0.509 1.704 1.581 141 35816 259.13
29.  Medetomidine 1.169 1192 117 2876 1.099 1631 2463 2516 45026 200.28
30.  Moxonidine 0.528 —-0.067 -024 038 -003 0.942 0.586 -1.125 0.2383 241.68
31.  Naphazoline 1.092 0.895 0.781 1.297 0.678 2031 1.706 1.476 35174 210.27
32, Oxymetazoline 1.108 1216 1151 2312 1578 1.666 2319 1.274 48653 260.37
33, Phentolamine 1.264 134 1436 197 1289 2.165 2.386 -0.834 3.3558 281.35
34, Prazosin 139 1594 0.863 2.948 0.909 1.639 1.442 1172 12843 38242
35 Terazosin 1.051 1119 2.204 2.266 0.405 1818 1.249 0.167 14671 38744
36. Tetryzoline 0.822 0.553 0.247 0.917 0.671 1259 1.001 0.68 3685 200.28
37.  Tiamenidine 0.808 0.434 0.068 0.834 0.308 167 1 -0.231 0.7942 2157
38.  Tolazoline 0.586 0.155 -0292 01 0.404 1.353 0.58 —-0.063 23414 160.21
39. UK-14304 0.831 0.269 0401 1493 -027 0.887 0.892 0.178 —13045 29216
40.  Xylometazoline 1.158 1.362 1468 238 192 2412 2475 2.385 53455 244.37
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Table 1. Continued
No.  Drug LogkAGP  Log k IAM Log ky, Suplex Log ky, RP Spheri Log ky, Aluspher,  Log ki, Unisphere, Log P M,

pH 25 pH 7.4 pH 2.5 pH70 pH73 pH 117
Cs1 CS2 CS3 cs4 CS5 CS6 Cs7 Cs8 9

Family C. B-Adrenolytics
41, Acebutolol 0.676 0.602 1.297 1.426 0.466 2237 1.044 0.351 11909 33643
42.  Alprenolol 149 0.918 1594 2.229 1.308 2831 1971 172 28145 249.34
43.  Atenolol 0.499 -0.146 0.136 -0.01 0.297 0414 0.226 —-1.048 -0.0259 26634
44, Betaxolol 0.838 0.994 1.238 2248 1121 2813 2.056 1772 29817 307.44
45.  Bisoprolol 0.694 0.646 0.576 1737 0.857 194 128 0.094 18375 32545
46.  Bupranolol 0.981 0.269 1178 2379 122 2484 2474 2055 30667 27179
47.  Carteolol 0.706 —0.146 1.201 0.754 0.057 1.39% 0.709 0.228 14165  292.38
48.  Céliprolol 0.7 0.723 1.645 145 0.775 0.854 1.037 0.232 19283 3795
49.  Cicloprolol 0.735 1012 1.465 1,994 0.937 2.757 1674 0573 20977 32343
50.  Dilevaol 1.106 1272 1.566 2486 115 2134 2641 —-1.258 19973 32841
51.  Esmolol 0.649 0.646 124 1.569 0.742 1.687 1.429 0.916 20004 295.38
52.  Metoprolol 0.564 0.434 0.93 1.247 0.456 1.948 1.098 —-0553 16943  267.38
53.  Nadolol 0.606 0.269 1.044 0.685 0.404 2849 0.778 —-0.637 11691  309.42
54.  Nifenaol 0.639 0.269 0.387 1214 0.343 1707 1316 0.075 09918  224.26
55.  Oxprenolol 121 0.586 1018 1674 0.82 1672 1.647 1218 18313  265.34
56.  Pindolol 0.87 0.586 0.675 1.084 0415 1.623 1126 0331 14832 248.32
57.  Practolol 0.509 —-0.067 0.565 0.294 0.541 1014 0.365 —0.627 05281  266.34
58.  Propanolol 1612 134 1234 261 1211 2.895 2707 2038 25974 25934
59.  Sotdol 0.516 —0.146 -0.281 0.088 -0.07 2.024 0.325 —-1.602 03693 272.36
60.  Timolol 0.696 0.385 0.956 12711 0.333 1.688 119 0.171 17504  316.42
Family D. Histamine HZ-receptor antagonists
61.  Antazoline 1.154 1.043 1.363 2.169 1.003 2128 2272 1.888 33795 265.35
62.  Astemizole 2.408 1437 1779 4.902 1492 236 4425 3508 6.4307 45858
63.  Chloropyramine 1431 133 0.798 3299 1.058 2216 3013 2.767 33737 289.82
64.  (+)-Chlorpheniramine 119 1.063 0.701 2912 0.726 2811 2.687 1.899 38189 2738
65.  (*)-Chlorpheniramine  1.202 1.055 0.701 2.895 0.794 2.788 2.7 2.043 38189 2738
66.  Cinnarizine 2.148 2.25 2.242 512 2476 3253 4842 4.665 54405 3685
67.  Dimethindene 1.382 1.194 0.308 2921 0.894 2.052 2.585 224 4.98 292.41
68.  Diphenhydramine 114 1.006 1531 2692 0.775 183 247 2112 31063 25535
69.  Isothipendy! 158 121 1431 3.089 1.233 2497 2.666 2535 39405 28542
70.  Ketotifen 1.459 1.168 124 3.105 1.002 1.946 2.707 195 36417  309.43
7. Mepyramine 1113 0.935 0332 2573 0.999 2103 227 2.049 28101 28539
72.  Pheniramine 0.926 0.602 -0.031 2.068 0.663 1.585 1.585 1.275 31744 24034
73.  Pizotifen 1.898 1.588 1.455 4.091 2154 3.032 2.203 3.465 55141 2954
74.  Promethazine 1833 1.508 1.693 4,081 1132 3169 3.069 3216 44869 28441
75.  Tripelennnamine 1.066 0.887 0.116 2558 0.894 2.093 2136 1.807 27292 25535
76.  Triprolidine 1.185 1.084 0.667 2818 0.834 2.359 2.294 2618 3.704 278.38
77.  Tymazoline 1.306 1.024 -0.091 2595 1.051 2111 2447 2012 38815 23232
Family E: Histamine H2-receptor antagonists
78.  Cimetidine 0.482 -0271 0373 1.593 -0.301 0.069 0412 0.724 0574 25234
79.  Famotidine 0.731 -0.271 0.416 0.755 —-0.267 0.184 0.875 0.193 —-06544 3374
80.  Metiamide 0.517 —-0.301 0.217 1.249 0.447 0.676 0.705 0.044 05201 2444
8l.  Nizatidine 0.46 -0.368 -0.006 0.832 0.114 0.209 0.089 -0.569 -0671 3315
82.  Renitidine 0.6 -0.016 0.301 1136 0.125 0.335 0.779 1779 02938 31441
83.  Roxatidine acetate 0.773 0.359 1.349 1579 0.312 1.145 0.794 1154 22099 3064
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laboratory Matlab toolbox for multivariate calibra-
tion was utilised. Clustering was executed by apply-
ing the Statstica 5.X program of Statistica, Gaithers-
burg, MD, USA. For the SPP of the data a lab-
oratory-designed genetic algorithm running in Mat-
lab 4.2c.1 has been applied.

4. Results and discussion

4.1. Principal component analysis of the data

Nasa et al. only considered the score plot of the
first and second PC, which was sufficient for their
purpose, since it alowed them to show that five
pharmacological groups can be partially discrimi-
nated. However, no reference to the loading plots
was made ignoring possible conclusions about the
role of the variables. Moreover PC3 and higher PCs
were not investigated.

Although it was not mentioned in Ref. [7] which
type of transformation was used on the original data,
it must be autoscaling, since the PC1-PC2 score plot
obtained by us after such a scaling procedure (Fig.
19) is the same as the one shown by Nasal et al. [7]
apart from the sign of the scores of PC2. The signs
in PCA just indicate a direction, which is the result
of an arbitrary choice depending on the used cal-
culating program. The opposite direction can be
chosen without it influencing the results drawn from
score and loading plots [18].

Throughout these investigations autoscaling is
applied. In this way, a scale effect due to an overall
larger retention for al substances on one of the CSs
is avoided [18].

4.1.1. Principal component analysis of the
autoscaled chromatographic data

Fig. 1 shows both the score (a) and the loading (b)
plot for PC1 and PC2. The score plot is the same as
the one shown by Nasal et a. [7], the five different
families (A—E) can be distinguished on it. Further-
more it is remarked that within family A several
substances (Nos. 2, 11, 13, 20) have a somewhat
deviating location and form a separate group. Al-
though only 6% of the variance is explained by PC2
it is of importance to the group separation. As
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Fig. 1. (8 PC1-PC2 score plot of the autoscaled chromatographic
data. The numbers represent the drugs 1-83 in Table 1. (b)
PC1-PC2 loading plot of the autoscaled chromatographic data.
The numbers represent CS1-CS8 in Table 1.

explained by Nasal et al. [7] the separation patterns
themselves have a pharmacological resemblance.
On the loading plot the loadings of all the CSs
along PC1 are very similar and positive. It should be
remembered that the score of an object is the
weighted sum of the origina variables, with as
weights their loadings. If, as is the case here, all the
loadings are similar and have the same sign, then the
scores of the substances along PC1 are more or less
equal to a constant multiplied with the sum of the
retention properties, as measured by the autoscaled
log k on the eight CSs. Since the log k is often
related to the log P [3,6], PC1 might possibly
represent a hydrophobicity axis. As shown further,
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this is indeed the case. The largest contrast in
loadings along PC2 is between CS3 (Suplex, pH 2.5)
and CS8 (Unisphere, pH 11.7). Looking at the pH
values of the CSs, it seems probable that along this
axis a difference in acid/base behaviour of the
substances is expressed. CS5, the other CS at low pH
(RP Spheri, pH 2.5) has the same sign as CS3. The
picture is mixed up however by CS6 (RP Spheri, pH
7.0) also having the same sign as CS3. Thus no
simple interpretation for the separation along PC2
can be given. It should be noted that CS2 (the IAM
column) has no influence at al on this PC, since it
has a loading close to zero. In Fig. 2, which shows
the loading plot of PC3 against PC2, PC3 essentially
represents the contrast between CS3 and CS6, which
were mixed up along PC2. Therefore PC2 is not a
pure acid/base axis and PC2 and PC3 together are
needed to express acid/base behaviour.

The main contrast in the loading plot for PC4 (Fig.
3) is between CS5 and CS2. It is not clear what this
means, al the more so because PC4 explains only
3% of the variance in the data.

It is interesting to note that in all loading plots
(PC4 included) the CS1, 4 and 7 are dways found in
each other’s vicinity. This means that they give very
correlated information. These findings are confirmed
when calculating the correlation coefficients (r)
between each of the CSs based on their log k (Table
2). It shows that CS1, 4 and 7 are indeed the most
correlated stationary phases (r £0.93). This becomes
even more obvious in Fig. 4 where hierarchical
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Fig. 2. PC2—-PC3 loading plot of the autoscaled chromatographic
data. The numbers represent CS1-CS8 in Table 1.
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Fig. 3. PC1-PC4 loading plot of the autoscaled chromatographic
data. The numbers represent CS1-CS8 in Table 1.

single linkage clustering is applied on the CSs with
as similarity measure 1—r. In this way the CSs are
classified according to their correlation with the other
CSs. Indeed, there is a quite close cluster between
CSl1, CHA and CS7 and to a somewhat lesser extent
CS8. The most different from the others are CS3 and
CS6. They are also the most different from each
other (r=0.632). Small discrepancies between the
dendrogram and PC1-PC2 loadings occur because
the distances in the loading plot only relate to the
variations accounted for by the first two components.
In the search for a physicochemical explanation
for the observed relationships, the relationship be-
tween log P values and log k for each CS is
investigated. In this way it should be possible to see
whether hydrophobicity is a main factor for log k.
The results are shown in Table 3. The highest
correlations with log P are obtained for CS7 and 8
(r=0.83), the correlation coefficients for most other
CSs are not much lower, except for CS3 (r=0.54)
and CS6 (r=0.68). This implies that the CSs that
resemble each other the most (CS1, 4 and 7), i.e,
show the highest correlation between their log k
values do so because they all describe mainly
hydrophobicity. The worst correlation is obtained by
CS3, which means that the log k on CS3 cannot be
explained to the same extent by log P. Thisis also, to
somewhat lesser extent, the case for CS6. Conse-
quently some other factor(s) must be responsible.
The fact that CSs 1, 2, 4, 7 and 8 are highly
correlated to the log P can be explained by the pH at
which the measurements on these columns are
performed. Knowing that the drugs are basic mole-
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Table 2

The correlation (r) matrix between each of the CSs

r Csi Cs2 CS3 CH4 CS5 CS6 Cs7 CS8
Cs1 1

Cs2 0.8399 1

Cs3 0.6971 0.6677 1

C+HA 0.9386 0.875 0.7223 1

CS5 0.8594 0.7488 0.7343 0.8326 1

CS6 0.7275 0.7669 0.632 0.7233 0.7435 1

Ccs7 0.9228 0.8565 0.6662 0.9387 0.8383 0.7294 1

CSs8 0.8843 0.7732 0.6285 0.9004 0.7982 0.6637 0.8695 1

cules, which are non-dissociated at higher pH and
knowing that the log P is determined for non-disso-
ciated moleculesit is logical that the CSs at high pH
correlate better with the log P than the CSs at low
pH. For CS3 the pH is low (2.5) and as a conse-
guence the molecules are dissociated. It should be
mentioned though that the low correlation found for
CS3 might have another cause then dissociation,
which is supported by the agreement between CS5
and CS6.

0.057

0.10

0151

0.207

0.257]

Fig. 4. Hierarchica single linkage clustering with similarity
measure 1—r of the CSs 1-8.

Table 3
The correlation coefficients (r) between log P and log k for each
CS

r Log P
Log P 1

Log k CS1 0.7852
Log k CS2 0.7975
Log k CS3 0.5444
Logk C4 0.7905
Log k CS5 0.751
Log k CS6 0.6875
Log k CS7 0.8372
Log k CS8 0.8352

The relationship between the autoscaled scores
along PCL1 of the drugs and their log P values (Fig.
5) is linear (r=0.8386). This confirms that the
separation of the pharmacological groups along PC1
is due to differences in hydrophobicity. Since the
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PC1 scores of autoscaled data

Fig. 5. The PC1 scores of the autoscaled data versus the log P.
The numbers represent the drugs 1-83 in Table 1.
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“true” hydrophobicity (log P) depends on the pK,
value of the analyte as well as on the pH of the CS,
PC1 actually represents a combination of the *‘intrin-
sic” hydrophobicity and the acid/base properties of
the drugs. However since all substances are basic,
the acid/base properties cannot be very influential
for PC1.

As a result the battery of CSs seems to yield
essentially a plot of hydrophobicity (PC1) against
(perhaps) acid/base characteristics (PC2—PC3).
More subtle differences are apparently not observed.
Certainly the AGP column (CS1) does not yield
additional information compared to the RP column at
pH 7.4 (C$4), athough one would have hoped that
this protein column would show more characteristic
interactions. In fact the main information in the data
can be reproduced by only two columns, CS8 and
CS3. The sum of CS8 and CS3 represents the
hydrophobicity while their difference (CS8—CS3)
shows the acid/base contrast. However utilising
three columns (C$4, CS8, CS3), plotting CHA
against CS8—CS3 (Fig. 6), has the advantage that
CHA represents conditions that are used very fre-
quently by chromatographers. C4 represents the
hydrophobicity and the closely clustered CSs, while
CS8—CS3 with their large pH difference show the
acid/base contrast. These findings are confirmed by
the high correlations that are found between the PC1
scores and the autoscaled log k of C4 on the one
hand (r=0.9642) and between the PC2 scores and
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Fig. 6. The autoscaled log k of CS8 minus the autoscaled log k of
CS3 versus the autoscaled log k of CS4. The numbers represent
the drugs 1-83 in Table 1.

the autoscaled log k of CS8 minus CS3 on the other
hand (r=-—0.8897).

4.2. Cluster analysis of the autoscaled
chromatographic data

Applying Ward's clustering method, with the
Euclidean distance as similarity measure, on the
autoscaled data was much less successful than PCA
meaning that the classification makes much less
pharmacological sense, i.e., the big clusters do not
contain al drugs from one and the same family. This
is due to the fact that in clustering one works in the
origina variable space where the overriding influ-
ence is hydrophobicity, so that the clustering is
merely based on distance along PC1. Since PC1 is
not able to separate pharmacological classes by
itself, the clustering is bad.

Clustering the first three PC’s scores on the other
hand yields much better results (Fig. 7); a family can
be assigned to each big cluster. The dendrogram is
obtained by applying Ward's method with Euclidean
distances to the normalised scores of the substances.
Thus the scores are not adjusted with the eigenvalues
of the PCs and each PC has the same weight. In this
way hydrophobicity is only one of the three vari-
ables.

The difficulty of thistype of procedure is to decide
how many PCs one should include. Criteriato decide
on the number of significant PCs have been de-
scribed in the literature [18]. However, different
criteria yield different numbers. Since in the preced-
ing PCA study the first three components were
important, these have been investigated here too.

4.3. Principal component analysis of the
autoscaled data including the molecular mass

The molecular mass has loadings (Fig. 8a) that
differ appreciably from zero only on PC1 and on
PC2. The loading on PC1 is positive as is the case
for the chromatographic variables but it is less
elevated. As a result the ranking of the substances
along PC1 is nearly the same with or without M,
(Fig. 8n). The main effect is on PC2, which explains
about 9.5% of the variance. The loading of M, is
positive and close to 1, the loadings of all the
chromatographic variables are small, negative and
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Fig. 7. Ward's hierarchical agglomerative clustering of the first three PC's normalised scores. The numbers represent the drugs 1-83 in

Table 1.

similar to each other. It seems therefore that this axis
is a nearly pure molecular mass axis. Moreover the
loadings along PC3 of the CSs with M, (Fig. 8c) are
equal to the ones along PC2 without M, (Fig. 2)
apart from their sign (minus instead of plus). All this
indicates that the information included in the molec-
ular mass is little correlated to that given by the
chromatographic data. Consequently it is concluded
that the information from the molecular mass is
different from that in the chromatographic variables.
In that sense its addition to the chromatographic data
is useful. However, it is also known that M, is not
extremely useful to describe diversity among sub-
stances [21], thus it does not improve the classifica-
tion of the drugs (Fig. 8b).

4.4. Grouping in view of WHIM descriptors

The split of family A in two subgroups cannot be
explained with log P and pH effects. In search of a
physicochemical explanation for the split there is a
need for some molecular descriptor to account for
the observed phenomena. Thus the relationship be-
tween the chromatographic data and molecular de-
scriptors as used in QSAR studies is investigated.

There are many descriptors available, but eventually
the WHIM descriptors as proposed by Todeschini
and Gramatica [14] were chosen.

The computations show that the eigenvalue of PC3
is very small for drug Nos. 2, 11, 13 and 20 (family
A1) and not for the other molecules of family A.
Consequently the small outlying group of molecules
has a very planar structure while the others have not
(Fig. 9). In comparison to the others these planar
drugs aso show a stronger interaction (higher log k
values) on CS3 and CS5 than is expected by their log
P values (Fig. 10). This stronger interaction is
responsible for their deviating behaviour as seen
before on Fig. 1a and Fig. 6. On the other CSs this
behaviour is not seen. Consequently the family Al's
special retention properties should arise from a
combination of the characteristic acidic environment
of CS3 and CS5 and the planar structure of the
molecules. At low pH all 83 molecules are ionized
thus, considering hydrophobicity is the main parti-
tion force, they are not retained very strongly. The
planar molecules however are retained more than the
others. Possibly due to their shape they are well
adsorbed on and/or folded between the hydrocarbon
chains of the stationary phase. Removing the chro-
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Fig. 8. (8 The PC1-PC2 loading plot of the autoscaled data including the molecular mass. The numbers represent CS1-CS8 and number 9
represents M, in Table 1. (b) The PC1-PC2 score plot of the autoscaled data including the molecular mass. The numbers represent the drugs
1-83in Table 1. (c) The PC2—PC3 loading plot of the autoscaled data including the molecular mass. The numbers 1-8 represent CS1-CS8
and number 9 represents M, in Table 1.

matographic results of molecules 2, 11, 13 and 20
from the data improves, especially in the case of CS3

S |

[ @[ :@\r @[SD and CS5, the correlation with log P (Table 4). This
N N
lll (e] (I)Me

demonstrates that the lower correlations of these CSs
(Table 3) were due to some extent to the deviating
retention mechanism of these molecules.

No. 2
S S
©iwj© C[ﬁ.:@\,{ 4.5. Sequential projection pursuit of the autoscaled
H H F

data

No. 11

No.13 No.20

Fig. 9. Structures of the drug Nos. 2, 3, 11, 13 and 20 in Table 1. On the SPP1-SPP2 ‘“‘score” plot (Fig. 11) the
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Table 4
The correlation coefficients () between log P and log k (except
drug Nos. 2, 11, 13, 20) for each CS

r Log P
Log P 1

Log k CS1 0.7983
Log k CS2 0.7960
Log k CS3 0.5998
Logk C4 0.8009
Log k CS5 0.7912
Log k CS6 0.6895
Log k CS7 0.8414
Log k CS8 0.8437
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Fig. 11. SPP1-SPP2 ‘“‘scoreplot” of the autoscaled data. The
numbers represent the drugs 1-83 in Table 1.

psychotropic substances (family A) are better sepa-
rated from the other substances along SPP1 then
aong PC1 (or any other PC). All columns have
similar loadings along PC1 (Fig. 1b) and the psy-
chotropics, which have generally higher log k values
than the other substances, are separated from the rest
but not completely (Fig. 1a). Looking at the corre-
sponding SPP “‘loading’ plot (Fig. 12) it seems that
aong SPP1 the distinction between CS1 (positive
loadings) and CS2 (negative loadings) is made. SPP1
is therefore an axis which compares the autoscaled
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Fig. 12. SPP1-SPP2 ‘‘loadingplot” of the autoscaled data. The
numbers represent CS1-CS8 in Table 1.




A. Detroyer et al. / J. Chromatogr. A 897 (2000) 23—-36 35

25
66
2_
06
157 H‘@“PQ4
1_
2
36368 443“6 ii@ﬁ
05} @6‘7
o
@ 0
05}
At
15F 2
U7
2 B9
25; 1 0 1 7 3
cst

Fig. 13. The autoscaled results of CS1 versus CS2. The numbers
represent the drugs 1-83 in Table 1.

log k on CS1 to those on CS2. It can be verified that
the ratio of the autoscaled values on CS1 to CS2 is
larger for the psychotropics in comparison to the
H1-receptor antagonists and the other substances
showing overlap with the psychotropics along PC1
(Fig. 13). It is known that some psychtropics bind
very well with the a-acid glycoprotein in blood [22]
which may explain their high log k values on CS1.

Excluding the results from family A, SPP was
repeated to investigate whether this would reveal less
distinct inhomogeneities. On the **score’” plot (Fig.
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Fig. 14. SPP1-SPP2 ‘‘scoreplot” of the autoscaled data minus
family A. The numbers represent the drugs 22—-83 in Table 1.
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Fig. 15. SPP1-SPP2 “‘loadingplot” of the autoscaled data minus
family A. The numbers represent CS1-CS8 in Table 1.

14) dong SPP1 no new inhomogeneities are seen.
Along SPP2 molecule Nos. 33 and 50 are clearly
separated from the other substances. The **loading”
plot (Fig. 15) indicates that both molecules are
marked by their low values for CS8 asto CS7, which
is confirmed in Fig. 16. It is found that this is not
only the case for CS8 versus CS7, but also for CS8
versus al the other CSs. Generdly, it can be
concluded that SPP is able to find some contrasts
more easily than PCA and that the two techniques
complete each other.
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Fig. 16. The autoscaled results of CS7 versus CS8. The numbers
represent the drugs 1-83 in Table 1.



36 A. Detroyer et al. / J. Chromatogr. A 897 (2000) 23—-36

5. Conclusion

The systematic chemometric analysis of chromato-
graphic data with the use of complementary tech-
niques such as PCA (with both score and loading
plots), SPP, clustering and regression alows to
uncover the information present in the data. It is
possible for instance to conclude which combination
of CSs seems to be the most useful. Here they are
CH4, CS3 and CS8, and perhaps, CS2 (because of its
contrast with CS1 for the psychotropics). However
the number of substances investigated is limited and
it may be that for other substances some of the other
CSs aso prove useful.

Other chemometric techniques might have been
applied in this exploratory study. Thisis for instance
the case for supervised pattern recognition methods
such as soft independent modelling of class analogy
(SIMCA) or linear discriminant analysis (LDA). We
have chosen not to do so because the eventual
intention of using a battery of CSs would be to
classify new substances in an unsupervised fashion.
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