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Abstract

A chemometric study has been conducted on a published data set consisting of the retention times of 83 substances, from
five pharmacological families, on eight HPLC systems. Principal component analysis, clustering and sequential projection
pursuit were applied. In this way it was investigated to what extent the combination of chromatography and chemometrics
allows one to make conclusions about pharmacological activities of (candidate) drugs and what the contribution is of the
different HPLC systems considered.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction matographic systems have been proposed that may
help to predict biological activity. They include

According to Valko [1] and several other authors amongst others the immobilized artificial membrane
[2] the chromatographic retention as well as the (IAM) stationary phase [4] consisting of cell mem-
biological activity of a molecule are connected to its brane phospholipids, and micellar liquid chromatog-
chemical structure. One can therefore hope to estab- raphy [5,6], where the properties of the passage over
lish a relationship between chromatographic reten- a cell membrane are mimicked by using as the
tion and biological activity. This has already been mobile phase aqueous solutions of surfactants at
successfully done for instance by relating the re- concentrations above the critical micellar concen-
tention on C stationary phases to the hydropho- tration, thus creating two phases with different18

bicity parameter (log P), which plays a role in many polarities.
quantitative structure–activity relationships (QSARs) Biological activity is a very complex matter,
[3]. determined by many variables; i.e., it is multivariate

Recently several new stationary phases or chro- by nature. Consequently one should try to include
more than one chromatographic system when at-
tempting to relate chromatographic and biological*Corresponding author. Tel.: 132-2-4774-734; fax: 132-2-
data. Such an interesting investigation was conducted4774-735.

E-mail address: fabi@vub.vub.ac.be (D.L. Massart). by Nasal et al. [7]. They studied, on eight chromato-
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graphic systems (CSs), 83 drugs belonging to several m the variables (the CSs). With PCA the amount of
families according to an established pharmacological original variables is reduced to a few latent variables
classification. The CSs were HPLC systems using or principal components (PCs) that still represent the
several of the latest stationary phases at different pH main information from the original data set. The first
values of the mobile phase. After applying principal new variable (PC1) is chosen in the direction of the
component analysis (PCA) they concluded that the largest variance in the data. The second PC is
obtained logarithms of the retention parameters (log defined in such a manner that it is orthogonal to the
k) allow classifying of the substances according to first one and it represents a maximum of variance
their pharmacological properties. This is not surpris- that was not explained by PC1, etc. Mathematically
ing since multivariate statistical methods (like PCA) each PC can be described as a linear combination of
have also been successfully applied for characteris- the original variables where the importance of each
ing similarity /diversity of compounds given knowl- original variable is given by the so-called loading of
edge of the chemical structure [8]. that variable. This yields for each object values,

Next to the chromatographic retention one of the called the scores, on each PC. With PCA two main
first experimental data available about a (new) mole- types of plots are obtained, namely the score plots
cule is its molecular mass (M ). The retention of which give information about the objects, here ther

candidate drugs is very often determined in a com- substances, and the loading plots representing the
binatorial synthesis context and, in such cases, one variables, in this case the CSs.
often applies liquid chromatography–mass spec-
trometry (LC–MS), with the electrospray ionization 2.2. Cluster analysis
technique, where the MS essentially yields the
molecular mass [9]. Being a descriptor of the mole- Cluster analysis is the collective name for several
cule, the M together with the chromatographic data techniques that are able to partition objects orr

may allow better relationships with biological data variables into different groups. Most used are hierar-
and may thus lead to a better classification. chical clustering methods. They produce a classifica-

Nasal et al. [7] were only interested in establishing tion in such way that any small cluster of a partition
that the classification of the 83 drugs based on the is fully included in one of the bigger clusters of the
retention data was possible. In this paper a more consecutive partition. Graphically the hierarchy can
complete chemometric analysis of their data is be represented by a dendrogram.
performed in order to extract as much information as Before one starts the partition of n objects or
possible. This way for instance it is studied whether variables it is necessary to determine the similarity
the data can give indications about the underlying between all objects. Most of the time the Euclidean
physicochemical phenomena responsible for the re- distance, which is a measure of the geometric
tention on a given stationary phase. Furthermore it is distance in a multidimensional space, is determined
evaluated if the results of all CSs are really needed to for each pair of objects. When clustering the vari-
make the classification. Since in LC–MS the electro- ables the correlation coefficient between variables is
spray MS yields very little fragmentation and is used used more frequent.
when one essentially wants to know the molecular In this article Ward’s hierarchical agglomerative
mass, it is examined to what extent the M yields clustering, which is often considered to be ther

additional information to the chromatographic re- method best able to separate similar and dissimilar
tention parameters for classification purposes. structures [10–12], is also applied. With this method

the two clusters whose fusion gives the minimum
increase in the total within groups error sum of

2. Theory squares is used at each stage.

2.1. Principal component analysis 2.3. Weighted holistic invariant molecular
descriptors

Nasal’s data set can be considered as a large n3m
matrix where n represents the objects (the drugs) and Weighted holistic invariant molecular (WHIM)
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descriptors are three-dimensional molecular indices 2.5. Transformations
that contain information about size, shape and sym-
metry. The essential characteristic of the method is Often some type of simple transformation (or
that a PCA is made of the three-dimensional space in scaling) is applied to the original data before it is
which the atoms are situated [13]. The first PC chemometrically analysed with methods like PCA,
describes the direction of the largest length of the clustering or SPP. The rows (objects) as well as the
molecule, the second PC the direction orthogonal to columns (variables) can be transformed solely or
the first and the largest variation around PC1, etc. A both, one after the other. Among the many possi-
quantitative measure is the eigenvalue associated to bilities column-wise autoscaling and centering are
each PC. If for instance the eigenvalue of PC3 is the most used transformations [18]. Column-center-
small compared to the others, then it means that the ing just gives a scale shift in the data matrix, because
molecule has a planar structure. PC1 and PC2 for each variable (here CS) a constant (the mean) is
describe the main axes in the planar molecule, PC3 subtracted from each of its measurements (here log k
the thickness of that planar molecule, which will be values). With autoscaling this difference is divided
small compared to the eigenvalues of PC1 and PC2 by the standard deviation, giving rise to variables
and to what would have been found for a more which are independent of the unit of measurement,
globular molecule [14]. and which have equal range and therefore impor-

tance.

2.4. Sequential projection pursuit
3. Experimental

Like PCA, projection pursuit (PP) is a chemo- The chromatographic data consisted of log k
metric method that projects an original multivariate values and were taken as such from Nasal et al. [7].
space onto a few latent variables. However the aim The studied chromatographic systems included: a
of PCA is to choose these new variables in such way chiral a -acid glycoprotein (AGP) column at pH 6.51

that they represent the maximal variance in the data, (CS1), an IAM column at pH 7.0 (CS2), a Suplex
while PP looks for the most ‘‘interesting’’ directions. pKb-100 column at pH 2.5 (CS3), a Suplex pKb-100
This means that the latent variables, in this case the column at pH 7.4 (CS4), a RP-Spheri column at pH
PP factors, have a direction that leads to a non- 2.5 (CS5), a RP-Spheri column at pH 7.0 (CS6), an
uniform distribution of the projected data. These Aluspher RP-select B column at pH 7.3 (CS7) and a
factors then show the inhomogeneities present in the Unisphere PBD column at pH 11.7 (CS8). More
data. A way of measuring non-uniformity and thus details concerning the experimental part can be
an index for the ‘‘interesting’’ directions is obtained found in Ref. [7]. The ninth variable added to this
by optimising entropy [15,16]. data analysis was the molecular mass. The drugs,

Because PP searches for all PP factors together, it their pharmacological classification (families A–E),
is computationally very intensive. That is why in this the retention data together with their M and otherr

article the sequential projection pursuit (SPP) meth- physicochemical properties are shown in Table 1.
od as described by Guo et al. [17] is applied. Here The log P values were estimated by applying the
the latent variables or SPP factors are sought sequen- on-line interactive LOGKOW program of the En-
tially in the order of their importance as measured by vironmental Science Center of Syracuse Research
the entropy index. Consequently the first SPP factor Corporation, Syracuse, NY, USA (http: / / esc.syrres-
is the one that describes the maximum entropy of the .com/|esc1/kowint.htm). The WHIM descriptors
projected data, the second SPP is constructed in such were calculated from the Cartesian coordinates of
way that it is orthogonal to the first and maximises optimised structures (Hyperchem 3.0 [19]) using the
the remaining entropy of the data, etc. Parallel to software of Todeschini, namely the WHIM-3D pack-
PCA it is also possible to make ‘‘score’’ and age [20]. The transformations applied on the data
‘‘loading’’ plots, representing, respectively, the ob- were executed in the Matlab 4.2c.1 program from the
jects and the variables. MathWorks, Natick, MA, USA. For the PCA a
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Table 1
The pharmacological classification, the retention data, the molecular masses and other physicochemical properties of the 83 drugs examined
in Ref. [7]

No. Drug Log k AGP Log k IAM Log k Suplex Log k RP Spheri Log k Aluspher, Log k Unisphere, Log P MW W W W r

pH 2.5 pH 7.4 pH 2.5 pH 7.0 pH 7.3 pH 11.7

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 9

Family A: Psychotropics and inactive phenothiazines

1. Acetopromazine 1.767 1.061 1.382 3.233 3.062 2.319 3.606 2.934 4.241 326.5

2. 2-Acetylphenothiazine 1.988 1.197 2.857 3.904 2.9 2.655 2.803 3.065 3.5054 241.33

3. Carbamazepine 0.846 0.392 1.539 2.356 1.229 2.365 1.455 0.926 2.2484 236.27

4. Chlorpromazine 2.131 1.435 1.595 4.051 1.935 2.632 3.309 4.076 5.2049 318.86

5. Chlorprothixene 2.206 1.533 1.597 4.642 2.244 2.417 4.44 4.235 5.1445 315.86

6. Clomipramine 2.005 1.391 2.134 4.144 2.353 2.473 4.115 3.91 5.6536 314.86

7. Desipramine 1.595 1.031 1.616 3.02 2.015 2.341 3.171 2.888 4.7979 266.39

8. Ethopropazine 2.066 1.213 1.418 3.241 2.443 3.761 2.832 4.181 5.4691 312.5

9. Fluphenazine 2.159 1.496 1.683 4.554 2.922 2.688 4.067 3.352 4.1345 437.52

10. Imipramine 1.67 1.097 1.391 3.535 2.082 3.158 3.133 3.02 5.0091 280.41

11. 2-Methoxyphenothiazine 2.151 1.282 3.048 4.094 3.097 3.056 3.397 3.4 3.1228 229.32

12. Perphenazine 2.283 1.393 1.635 4.305 2.997 3.092 3.256 3.07 3.816 403.97

13. Phenothiazine 1.854 1.354 3.06 3.949 2.769 3.167 3.263 3.375 3.8248 199.3

14. Prochlorperazine 2.614 1.726 1.452 4.878 1.843 2.421 4.395 3.523 4.7897 373.94

15. Promazine 1.89 1.165 1.556 3.492 2.338 2.808 3.794 3.294 4.5604 284.4

16. Propiomazine 2.105 1.234 1.576 4.02 2.536 2.748 3.958 3.497 4.6586 340.48

17. Thioridazine 2.448 1.752 2.113 4.26 2.055 2.924 3.182 4.655 6.4486 370.6

18. cis-Thiothixene 2.273 1.359 1.417 3.971 2.098 3.365 3.58 2.77 3.1392 443.63

19. Trifluoperazine 2.388 1.82 1.778 4.948 1.792 2.644 5.022 3.632 5.1082 407.49

20. 2-(Trifluoromethyl) phenothiazine 2.543 1.815 3.569 5.354 2.227 3.255 4.418 4.804 4.7878 267.27

21. Triflupromazine 1.976 1.514 1.96 4.409 2.533 2.638 3.79 4.117 5.5234 352.44

22. Trimeprazine 1.934 1.209 1.472 3.488 2.426 2.174 3.681 3.508 4.978 298.44

Family B: Agonists and antagonists of a-adrenoreceptors

23. Cirazoline 1.082 0.94 0.826 1.374 0.693 1.934 1.948 1.583 3.2186 216.28

24. Clonidine 0.847 0.41 0.08 1.138 0.201 1.164 1.163 1.283 1.888 230.1

25. Detomidine 1.073 1.018 1.097 2.582 0.758 1.337 2.255 1.627 3.2915 186.26

26. Doxazosin 1.798 1.983 1.524 3.874 1.876 3.204 2.694 2.823 2.0853 451.48

27. Indoramin 1.454 1.594 1.442 3.218 1.298 2.373 2.649 2.299 3.6021 347.46

28. Lofexidine 0.965 0.879 0.791 1.479 0.509 1.704 1.581 1.41 3.5816 259.13

29. Medetomidine 1.169 1.192 1.17 2.876 1.099 1.631 2.463 2.516 4.5026 200.28

30. Moxonidine 0.528 20.067 20.24 0.385 20.03 0.942 0.586 21.125 0.2383 241.68

31. Naphazoline 1.092 0.895 0.781 1.297 0.678 2.031 1.706 1.476 3.5174 210.27

32. Oxymetazoline 1.108 1.216 1.151 2.312 1.578 1.666 2.319 1.274 4.8653 260.37

33. Phentolamine 1.264 1.34 1.436 1.97 1.289 2.165 2.386 20.834 3.3558 281.35

34. Prazosin 1.39 1.594 0.863 2.948 0.909 1.639 1.442 1.172 1.2843 382.42

35. Terazosin 1.051 1.119 2.204 2.266 0.405 1.818 1.249 0.167 1.4671 387.44

36. Tetryzoline 0.822 0.553 0.247 0.917 0.671 1.259 1.001 0.68 3.685 200.28

37. Tiamenidine 0.808 0.434 0.068 0.834 0.308 1.67 1 20.231 0.7942 215.7

38. Tolazoline 0.586 0.155 20.292 0.1 0.404 1.353 0.58 20.063 2.3414 160.21

39. UK-14 304 0.831 0.269 0.401 1.493 20.27 0.887 0.892 0.178 21.3045 292.16

40. Xylometazoline 1.158 1.362 1.468 2.38 1.92 2.412 2.475 2.385 5.3455 244.37
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Table 1. Continued

No. Drug Log k AGP Log k IAM Log k Suplex Log k RP Spheri Log k Aluspher, Log k Unisphere, Log P MW W W W r

pH 2.5 pH 7.4 pH 2.5 pH 7.0 pH 7.3 pH 11.7

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 9

Family C: b-Adrenolytics

41. Acebutolol 0.676 0.602 1.297 1.426 0.466 2.237 1.044 0.351 1.1909 336.43

42. Alprenolol 1.49 0.918 1.594 2.229 1.308 2.831 1.971 1.72 2.8145 249.34

43. Atenolol 0.499 20.146 0.136 20.01 0.297 0.414 0.226 21.048 20.0259 266.34

44. Betaxolol 0.838 0.994 1.238 2.248 1.121 2.813 2.056 1.772 2.9817 307.44

45. Bisoprolol 0.694 0.646 0.576 1.737 0.857 1.94 1.28 0.094 1.8375 325.45

46. Bupranolol 0.981 0.269 1.178 2.379 1.22 2.484 2.474 2.055 3.0667 271.79

47. Carteolol 0.706 20.146 1.201 0.754 0.057 1.396 0.709 0.228 1.4165 292.38

48. Celiprolol 0.7 0.723 1.645 1.45 0.775 0.854 1.037 0.232 1.9283 379.5

49. Cicloprolol 0.735 1.012 1.465 1.994 0.937 2.757 1.674 0.573 2.0977 323.43

50. Dilevalol 1.106 1.272 1.566 2.486 1.15 2.134 2.641 21.258 1.9973 328.41

51. Esmolol 0.649 0.646 1.24 1.569 0.742 1.687 1.429 0.916 2.0004 295.38

52. Metoprolol 0.564 0.434 0.93 1.247 0.456 1.948 1.098 20.553 1.6943 267.38

53. Nadolol 0.606 0.269 1.044 0.685 0.404 2.849 0.778 20.637 1.1691 309.42

54. Nifenalol 0.639 0.269 0.387 1.214 0.343 1.707 1.316 0.075 0.9918 224.26

55. Oxprenolol 1.21 0.586 1.018 1.674 0.82 1.672 1.647 1.218 1.8313 265.34

56. Pindolol 0.87 0.586 0.675 1.084 0.415 1.623 1.126 0.331 1.4832 248.32

57. Practolol 0.509 20.067 0.565 0.294 0.541 1.014 0.365 20.627 0.5281 266.34

58. Propanolol 1.612 1.34 1.234 2.61 1.211 2.895 2.707 2.038 2.5974 259.34

59. Sotalol 0.516 20.146 20.281 0.088 20.07 2.024 0.325 21.602 0.3693 272.36

60. Timolol 0.696 0.385 0.956 1.271 0.333 1.688 1.19 0.171 1.7504 316.42

Family D: Histamine H1-receptor antagonists

61. Antazoline 1.154 1.043 1.363 2.169 1.003 2.128 2.272 1.888 3.3795 265.35

62. Astemizole 2.408 1.437 1.779 4.902 1.492 2.36 4.425 3.508 6.4307 458.58

63. Chloropyramine 1.431 1.33 0.798 3.299 1.058 2.216 3.013 2.767 3.3737 289.82

64. (1)-Chlorpheniramine 1.19 1.063 0.701 2.912 0.726 2.811 2.687 1.899 3.8189 273.8

65. (6)-Chlorpheniramine 1.202 1.055 0.701 2.895 0.794 2.788 2.7 2.043 3.8189 273.8

66. Cinnarizine 2.148 2.25 2.242 5.12 2.476 3.253 4.842 4.665 5.4405 368.5

67. Dimethindene 1.382 1.194 0.308 2.921 0.894 2.052 2.585 2.24 4.98 292.41

68. Diphenhydramine 1.14 1.006 1.531 2.692 0.775 1.83 2.47 2.112 3.1063 255.35

69. Isothipendyl 1.58 1.21 1.431 3.089 1.233 2.497 2.666 2.535 3.9405 285.42

70. Ketotifen 1.459 1.168 1.24 3.105 1.002 1.946 2.707 1.95 3.6417 309.43

71. Mepyramine 1.113 0.935 0.332 2.573 0.999 2.103 2.27 2.049 2.8101 285.39

72. Pheniramine 0.926 0.602 20.031 2.068 0.663 1.585 1.585 1.275 3.1744 240.34

73. Pizotifen 1.898 1.588 1.455 4.091 2.154 3.032 2.203 3.465 5.5141 295.4

74. Promethazine 1.833 1.508 1.693 4.081 1.132 3.169 3.069 3.216 4.4869 284.41

75. Tripelennnamine 1.066 0.887 0.116 2.558 0.894 2.093 2.136 1.807 2.7292 255.35

76. Triprolidine 1.185 1.084 0.667 2.818 0.834 2.359 2.294 2.618 3.704 278.38

77. Tymazoline 1.306 1.024 20.091 2.595 1.051 2.111 2.447 2.012 3.8815 232.32

Family E: Histamine H2-receptor antagonists

78. Cimetidine 0.482 20.271 0.373 1.593 20.301 0.069 0.412 0.724 0.574 252.34

79. Famotidine 0.731 20.271 0.416 0.755 20.267 0.184 0.875 0.193 20.6544 337.4

80. Metiamide 0.517 20.301 0.217 1.249 0.447 0.676 0.705 0.044 0.5201 244.4

81. Nizatidine 0.46 20.368 20.006 0.832 0.114 0.209 0.089 20.569 20.671 331.5

82. Ranitidine 0.6 20.016 0.301 1.136 0.125 0.335 0.779 1.779 0.2938 314.41

83. Roxatidine acetate 0.773 0.359 1.349 1.579 0.312 1.145 0.794 1.154 2.2099 306.4
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laboratory Matlab toolbox for multivariate calibra-
tion was utilised. Clustering was executed by apply-
ing the Statstica 5.X program of Statistica, Gaithers-
burg, MD, USA. For the SPP of the data a lab-
oratory-designed genetic algorithm running in Mat-
lab 4.2c.1 has been applied.

4. Results and discussion

4.1. Principal component analysis of the data

Nasal et al. only considered the score plot of the
first and second PC, which was sufficient for their
purpose, since it allowed them to show that five
pharmacological groups can be partially discrimi-
nated. However, no reference to the loading plots
was made ignoring possible conclusions about the
role of the variables. Moreover PC3 and higher PCs
were not investigated.

Although it was not mentioned in Ref. [7] which
type of transformation was used on the original data,
it must be autoscaling, since the PC1–PC2 score plot
obtained by us after such a scaling procedure (Fig.
1a) is the same as the one shown by Nasal et al. [7]
apart from the sign of the scores of PC2. The signs
in PCA just indicate a direction, which is the result
of an arbitrary choice depending on the used cal-
culating program. The opposite direction can be Fig. 1. (a) PC1–PC2 score plot of the autoscaled chromatographic
chosen without it influencing the results drawn from data. The numbers represent the drugs 1–83 in Table 1. (b)
score and loading plots [18]. PC1–PC2 loading plot of the autoscaled chromatographic data.

The numbers represent CS1–CS8 in Table 1.Throughout these investigations autoscaling is
applied. In this way, a scale effect due to an overall
larger retention for all substances on one of the CSs explained by Nasal et al. [7] the separation patterns
is avoided [18]. themselves have a pharmacological resemblance.

On the loading plot the loadings of all the CSs
4.1.1. Principal component analysis of the along PC1 are very similar and positive. It should be
autoscaled chromatographic data remembered that the score of an object is the

Fig. 1 shows both the score (a) and the loading (b) weighted sum of the original variables, with as
plot for PC1 and PC2. The score plot is the same as weights their loadings. If, as is the case here, all the
the one shown by Nasal et al. [7], the five different loadings are similar and have the same sign, then the
families (A–E) can be distinguished on it. Further- scores of the substances along PC1 are more or less
more it is remarked that within family A several equal to a constant multiplied with the sum of the
substances (Nos. 2, 11, 13, 20) have a somewhat retention properties, as measured by the autoscaled
deviating location and form a separate group. Al- log k on the eight CSs. Since the log k is often
though only 6% of the variance is explained by PC2 related to the log P [3,6], PC1 might possibly
it is of importance to the group separation. As represent a hydrophobicity axis. As shown further,
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this is indeed the case. The largest contrast in
loadings along PC2 is between CS3 (Suplex, pH 2.5)
and CS8 (Unisphere, pH 11.7). Looking at the pH
values of the CSs, it seems probable that along this
axis a difference in acid /base behaviour of the
substances is expressed. CS5, the other CS at low pH
(RP Spheri, pH 2.5) has the same sign as CS3. The
picture is mixed up however by CS6 (RP Spheri, pH
7.0) also having the same sign as CS3. Thus no
simple interpretation for the separation along PC2
can be given. It should be noted that CS2 (the IAM
column) has no influence at all on this PC, since it
has a loading close to zero. In Fig. 2, which shows Fig. 3. PC1–PC4 loading plot of the autoscaled chromatographic

data. The numbers represent CS1–CS8 in Table 1.the loading plot of PC3 against PC2, PC3 essentially
represents the contrast between CS3 and CS6, which
were mixed up along PC2. Therefore PC2 is not a single linkage clustering is applied on the CSs with
pure acid /base axis and PC2 and PC3 together are as similarity measure 12r. In this way the CSs are
needed to express acid /base behaviour. classified according to their correlation with the other

The main contrast in the loading plot for PC4 (Fig. CSs. Indeed, there is a quite close cluster between
3) is between CS5 and CS2. It is not clear what this CS1, CS4 and CS7 and to a somewhat lesser extent
means, all the more so because PC4 explains only CS8. The most different from the others are CS3 and
3% of the variance in the data. CS6. They are also the most different from each

It is interesting to note that in all loading plots other (r50.632). Small discrepancies between the
(PC4 included) the CS1, 4 and 7 are always found in dendrogram and PC1–PC2 loadings occur because
each other’s vicinity. This means that they give very the distances in the loading plot only relate to the
correlated information. These findings are confirmed variations accounted for by the first two components.
when calculating the correlation coefficients (r) In the search for a physicochemical explanation
between each of the CSs based on their log k (Table for the observed relationships, the relationship be-
2). It shows that CS1, 4 and 7 are indeed the most tween log P values and log k for each CS is
correlated stationary phases (r 60.93). This becomes investigated. In this way it should be possible to see
even more obvious in Fig. 4 where hierarchical whether hydrophobicity is a main factor for log k.

The results are shown in Table 3. The highest
correlations with log P are obtained for CS7 and 8
(r50.83), the correlation coefficients for most other
CSs are not much lower, except for CS3 (r50.54)
and CS6 (r50.68). This implies that the CSs that
resemble each other the most (CS1, 4 and 7), i.e.,
show the highest correlation between their log k
values do so because they all describe mainly
hydrophobicity. The worst correlation is obtained by
CS3, which means that the log k on CS3 cannot be
explained to the same extent by log P. This is also, to
somewhat lesser extent, the case for CS6. Conse-
quently some other factor(s) must be responsible.

The fact that CSs 1, 2, 4, 7 and 8 are highly
correlated to the log P can be explained by the pH at
which the measurements on these columns areFig. 2. PC2–PC3 loading plot of the autoscaled chromatographic

data. The numbers represent CS1–CS8 in Table 1. performed. Knowing that the drugs are basic mole-
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Table 2
The correlation (r) matrix between each of the CSs

r CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8

CS1 1
CS2 0.8399 1
CS3 0.6971 0.6677 1
CS4 0.9386 0.875 0.7223 1
CS5 0.8594 0.7488 0.7343 0.8326 1
CS6 0.7275 0.7669 0.632 0.7233 0.7435 1
CS7 0.9228 0.8565 0.6662 0.9387 0.8383 0.7294 1
CS8 0.8843 0.7732 0.6285 0.9004 0.7982 0.6637 0.8695 1

Table 3cules, which are non-dissociated at higher pH and
The correlation coefficients (r) between log P and log k for eachknowing that the log P is determined for non-disso-
CS

ciated molecules it is logical that the CSs at high pH
r Log Pcorrelate better with the log P than the CSs at low

pH. For CS3 the pH is low (2.5) and as a conse- Log P 1
Log k CS1 0.7852quence the molecules are dissociated. It should be
Log k CS2 0.7975mentioned though that the low correlation found for
Log k CS3 0.5444

CS3 might have another cause then dissociation, Log k CS4 0.7905
which is supported by the agreement between CS5 Log k CS5 0.751
and CS6. Log k CS6 0.6875

Log k CS7 0.8372
Log k CS8 0.8352

The relationship between the autoscaled scores
along PC1 of the drugs and their log P values (Fig.
5) is linear (r50.8386). This confirms that the
separation of the pharmacological groups along PC1
is due to differences in hydrophobicity. Since the

Fig. 4. Hierarchical single linkage clustering with similarity Fig. 5. The PC1 scores of the autoscaled data versus the log P.
measure 12r of the CSs 1–8. The numbers represent the drugs 1–83 in Table 1.
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‘‘true’’ hydrophobicity (log P) depends on the pK the autoscaled log k of CS8 minus CS3 on the othera

value of the analyte as well as on the pH of the CS, hand (r520.8897).
PC1 actually represents a combination of the ‘‘intrin-
sic’’ hydrophobicity and the acid /base properties of 4.2. Cluster analysis of the autoscaled
the drugs. However since all substances are basic, chromatographic data
the acid /base properties cannot be very influential
for PC1. Applying Ward’s clustering method, with the

As a result the battery of CSs seems to yield Euclidean distance as similarity measure, on the
essentially a plot of hydrophobicity (PC1) against autoscaled data was much less successful than PCA
(perhaps) acid /base characteristics (PC2–PC3). meaning that the classification makes much less
More subtle differences are apparently not observed. pharmacological sense, i.e., the big clusters do not
Certainly the AGP column (CS1) does not yield contain all drugs from one and the same family. This
additional information compared to the RP column at is due to the fact that in clustering one works in the
pH 7.4 (CS4), although one would have hoped that original variable space where the overriding influ-
this protein column would show more characteristic ence is hydrophobicity, so that the clustering is
interactions. In fact the main information in the data merely based on distance along PC1. Since PC1 is
can be reproduced by only two columns, CS8 and not able to separate pharmacological classes by
CS3. The sum of CS8 and CS3 represents the itself, the clustering is bad.
hydrophobicity while their difference (CS82CS3) Clustering the first three PC’s scores on the other
shows the acid /base contrast. However utilising hand yields much better results (Fig. 7); a family can
three columns (CS4, CS8, CS3), plotting CS4 be assigned to each big cluster. The dendrogram is
against CS82CS3 (Fig. 6), has the advantage that obtained by applying Ward’s method with Euclidean
CS4 represents conditions that are used very fre- distances to the normalised scores of the substances.
quently by chromatographers. CS4 represents the Thus the scores are not adjusted with the eigenvalues
hydrophobicity and the closely clustered CSs, while of the PCs and each PC has the same weight. In this
CS82CS3 with their large pH difference show the way hydrophobicity is only one of the three vari-
acid /base contrast. These findings are confirmed by ables.
the high correlations that are found between the PC1 The difficulty of this type of procedure is to decide
scores and the autoscaled log k of CS4 on the one how many PCs one should include. Criteria to decide
hand (r50.9642) and between the PC2 scores and on the number of significant PCs have been de-

scribed in the literature [18]. However, different
criteria yield different numbers. Since in the preced-
ing PCA study the first three components were
important, these have been investigated here too.

4.3. Principal component analysis of the
autoscaled data including the molecular mass

The molecular mass has loadings (Fig. 8a) that
differ appreciably from zero only on PC1 and on
PC2. The loading on PC1 is positive as is the case
for the chromatographic variables but it is less
elevated. As a result the ranking of the substances
along PC1 is nearly the same with or without Mr

(Fig. 8b). The main effect is on PC2, which explains
about 9.5% of the variance. The loading of M isrFig. 6. The autoscaled log k of CS8 minus the autoscaled log k of
positive and close to 1, the loadings of all theCS3 versus the autoscaled log k of CS4. The numbers represent

the drugs 1–83 in Table 1. chromatographic variables are small, negative and
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Fig. 7. Ward’s hierarchical agglomerative clustering of the first three PC’s normalised scores. The numbers represent the drugs 1–83 in
Table 1.

similar to each other. It seems therefore that this axis There are many descriptors available, but eventually
is a nearly pure molecular mass axis. Moreover the the WHIM descriptors as proposed by Todeschini
loadings along PC3 of the CSs with M (Fig. 8c) are and Gramatica [14] were chosen.r

equal to the ones along PC2 without M (Fig. 2) The computations show that the eigenvalue of PC3r

apart from their sign (minus instead of plus). All this is very small for drug Nos. 2, 11, 13 and 20 (family
indicates that the information included in the molec- A1) and not for the other molecules of family A.
ular mass is little correlated to that given by the Consequently the small outlying group of molecules
chromatographic data. Consequently it is concluded has a very planar structure while the others have not
that the information from the molecular mass is (Fig. 9). In comparison to the others these planar
different from that in the chromatographic variables. drugs also show a stronger interaction (higher log k
In that sense its addition to the chromatographic data values) on CS3 and CS5 than is expected by their log
is useful. However, it is also known that M is not P values (Fig. 10). This stronger interaction isr

extremely useful to describe diversity among sub- responsible for their deviating behaviour as seen
stances [21], thus it does not improve the classifica- before on Fig. 1a and Fig. 6. On the other CSs this
tion of the drugs (Fig. 8b). behaviour is not seen. Consequently the family A1’s

special retention properties should arise from a
4.4. Grouping in view of WHIM descriptors combination of the characteristic acidic environment

of CS3 and CS5 and the planar structure of the
The split of family A in two subgroups cannot be molecules. At low pH all 83 molecules are ionized

explained with log P and pH effects. In search of a thus, considering hydrophobicity is the main parti-
physicochemical explanation for the split there is a tion force, they are not retained very strongly. The
need for some molecular descriptor to account for planar molecules however are retained more than the
the observed phenomena. Thus the relationship be- others. Possibly due to their shape they are well
tween the chromatographic data and molecular de- adsorbed on and/or folded between the hydrocarbon
scriptors as used in QSAR studies is investigated. chains of the stationary phase. Removing the chro-
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Fig. 8. (a) The PC1–PC2 loading plot of the autoscaled data including the molecular mass. The numbers represent CS1–CS8 and number 9
represents M in Table 1. (b) The PC1–PC2 score plot of the autoscaled data including the molecular mass. The numbers represent the drugsr

1–83 in Table 1. (c) The PC2–PC3 loading plot of the autoscaled data including the molecular mass. The numbers 1–8 represent CS1–CS8
and number 9 represents M in Table 1.r

matographic results of molecules 2, 11, 13 and 20
from the data improves, especially in the case of CS3
and CS5, the correlation with log P (Table 4). This
demonstrates that the lower correlations of these CSs
(Table 3) were due to some extent to the deviating
retention mechanism of these molecules.

4.5. Sequential projection pursuit of the autoscaled
data

Fig. 9. Structures of the drug Nos. 2, 3, 11, 13 and 20 in Table 1. On the SPP1–SPP2 ‘‘score’’ plot (Fig. 11) the
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Fig. 11. SPP1–SPP2 ‘‘scoreplot’’ of the autoscaled data. The
numbers represent the drugs 1–83 in Table 1.

psychotropic substances (family A) are better sepa-
rated from the other substances along SPP1 then
along PC1 (or any other PC). All columns have
similar loadings along PC1 (Fig. 1b) and the psy-
chotropics, which have generally higher log k values
than the other substances, are separated from the rest
but not completely (Fig. 1a). Looking at the corre-
sponding SPP ‘‘loading’’ plot (Fig. 12) it seems that
along SPP1 the distinction between CS1 (positive
loadings) and CS2 (negative loadings) is made. SPP1
is therefore an axis which compares the autoscaled

Fig. 10. The log P versus the log k of the drugs for CS3 and CS5.
The numbers represent the drugs 1–83 in Table 1.

Table 4
The correlation coefficients (r) between log P and log k (except
drug Nos. 2, 11, 13, 20) for each CS

r Log P

Log P 1
Log k CS1 0.7983
Log k CS2 0.7960
Log k CS3 0.5998
Log k CS4 0.8009
Log k CS5 0.7912
Log k CS6 0.6895
Log k CS7 0.8414

Fig. 12. SPP1–SPP2 ‘‘loadingplot’’ of the autoscaled data. The
Log k CS8 0.8437

numbers represent CS1–CS8 in Table 1.
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Fig. 15. SPP1–SPP2 ‘‘loadingplot’’ of the autoscaled data minusFig. 13. The autoscaled results of CS1 versus CS2. The numbers
family A. The numbers represent CS1–CS8 in Table 1.represent the drugs 1–83 in Table 1.

log k on CS1 to those on CS2. It can be verified that 14) along SPP1 no new inhomogeneities are seen.
the ratio of the autoscaled values on CS1 to CS2 is Along SPP2 molecule Nos. 33 and 50 are clearly
larger for the psychotropics in comparison to the separated from the other substances. The ‘‘loading’’
H1-receptor antagonists and the other substances plot (Fig. 15) indicates that both molecules are
showing overlap with the psychotropics along PC1 marked by their low values for CS8 as to CS7, which
(Fig. 13). It is known that some psychtropics bind is confirmed in Fig. 16. It is found that this is not
very well with the a-acid glycoprotein in blood [22] only the case for CS8 versus CS7, but also for CS8
which may explain their high log k values on CS1. versus all the other CSs. Generally, it can be

Excluding the results from family A, SPP was concluded that SPP is able to find some contrasts
repeated to investigate whether this would reveal less more easily than PCA and that the two techniques
distinct inhomogeneities. On the ‘‘score’’ plot (Fig. complete each other.

Fig. 14. SPP1–SPP2 ‘‘scoreplot’’ of the autoscaled data minus Fig. 16. The autoscaled results of CS7 versus CS8. The numbers
family A. The numbers represent the drugs 22–83 in Table 1. represent the drugs 1–83 in Table 1.
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